Computer-Vision-Enabled Video Analysis for Motion Amount Quantification

Neel Macwan, Robotics & Autonomous Systems Mentor: Shenghan Guo, Assistant Professor School of Computing & Augmented Intelligence

Problem

Monitoring and quantifying factory workers' motion amount is crucial for improving their performance, health, and ergonomic load, but it remains a challenging task due to difficulties in motion tracking, and motion amount quantification.

Objectives

- Investigate motion amount quantification and trajectory in in-situ videos, focusing on local and collective motion of body joints.
- Propose a computer-vision-based framework to address this challenge by tracking workers' upper limbs, quantifying their motion amount, and alerting when the motion amount reaches a warning level.
- we propose the utilization of a control chart for the systematic monitoring of worker fatigue statistics.

Future works

- Future work will explore real-time video data, video fusion from different angles, and more complicated tasks.
- Overall, the findings demonstrate the potential of the CV-based technique to provide accurate and reliable representations of motion and trajectories.

- MediaPipe is used to extract body-joint landmarks.
- Out of 33 extracted landmarks, only relevant ones are used for mathematical analysis.

$$\boldsymbol{X} = \begin{bmatrix} (x_{13}, y_{13}, z_{13}) & (x_{14}, y_{14}, z_{14}) & \dots & (x_{22}, y_{22}, z_{22}) \\ (x_{13}, y_{13}, z_{13}) & (x_{14}, y_{14}, z_{14}) & \dots & (x_{22}, y_{22}, z_{22}) \\ \dots & \dots & \dots & \dots \\ (x_{13}, y_{13}, z_{13}) & (x_{14}, y_{14}, z_{14}) & \dots & (x_{22}, y_{22}, z_{22}) \end{bmatrix}_{nxp}$$

It is assumed that the landmarks' data stream follows multivariate normal distribution.

Mean:
$$\overline{\boldsymbol{m}} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Covariance Matrix:
$$S = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{m})(x_i - \overline{m})^T$$

Control Value:
$$t_i = n(x_i - \bar{x})S^{-1}(x_i - \bar{x})^T$$

Upper Control Limit:
$$UCL = \frac{p(n-1)}{(n-p)} f(x)$$

Lower Control Limit: LCL = 0

Control value can be referred as a target value that a process or system is designed to maintain or achieve.

Control limits are the bounds of a control chart that are used to determine if a process is in a state of control or out of control.

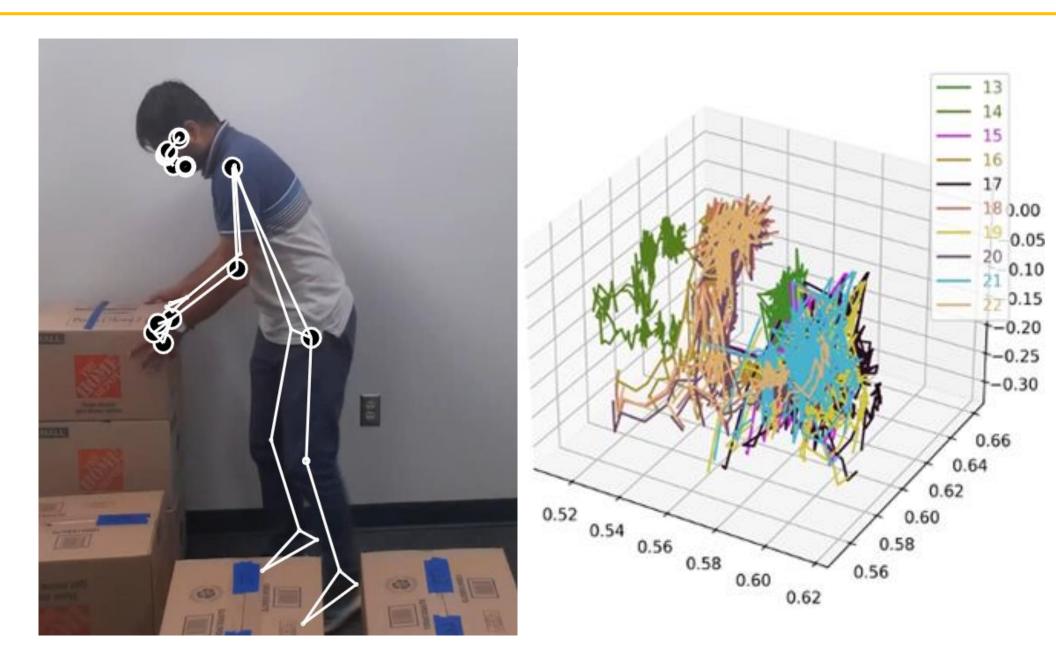


Fig 1. (1) Body landmark detection (2) Visualization of movement of landmarks throughout the process

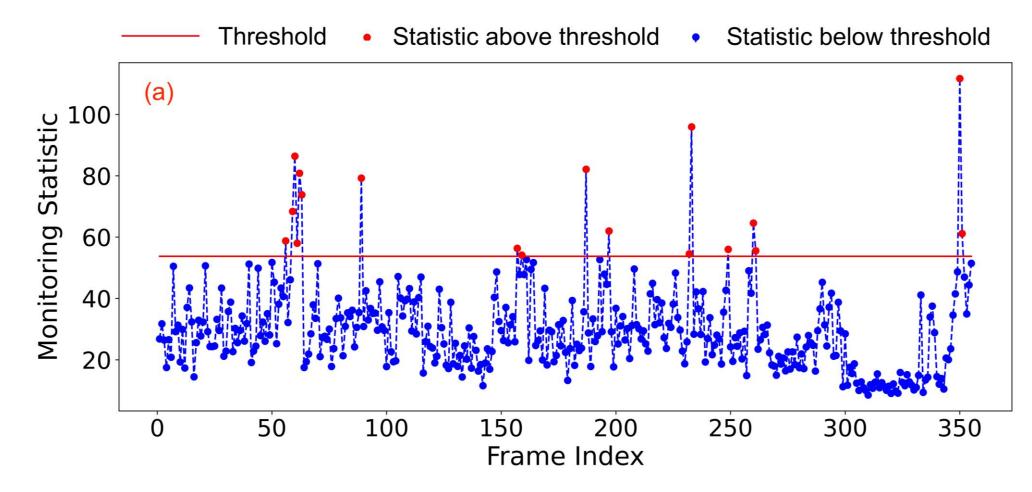


Fig 2. T2 Control Chart of the process

Acknowledgement

Data **A**nalytics & **I**nsights in **M**anufacturing (DAIM)

This work is part of the project "Computer-Vision-Enabler Human Worker Motion Amount Quantification" in collaboration with **Dr. Heejin Jeong** and **Hari Iyer**. We appreciate their support in data and domain knowledge.

