Adaptive Neural Gradient Fields for Robot Planning and Control With Hardware In The Loop
Hussain Bhavnagarwala, Mechanical Engineering

Mentor: Wanxin Jin, Assistant Professor
School for Engineering of Matter, Transport and Energy

Initialization: :
INTRODUCTION APPROACH Sg, — neural gradient field (V,f(x,u)) We.have applle_d o propos_ed MEthoe g solve a ground
S a4 neural qradier R vehicle navigation and planning problem. The vehicle
uGB_ initial ugtm ot wiA dynamics was treated as a black box (hardware). Blow is
e Gradient-based optimization for robot planning and Randomized Smoothing (RS) [3] xo . — initial Stc{te Y the animation of the planned motion.
. . . int —
CO”“TO' wg.r]:fhard;/.v atr © otfhunknro]\ivr? dﬁ/ nadmlcs I e [(@iolg e RS is to smooth a given (potentially non-smooth) forward rollout on f (hardware)using ugand
requifes Cleteit ek IR G e function by convoluting the function f(x, w) value with Xinit L0 get X, trajectory
istributi ' — initial cost value
e Differentiation through the hardware is possible using A disibRlonSital Cea AS R E el While Ic])(:)p' K
numgrlcal-d|f1_‘erent|a_t|on-llke technlque_s like score fe(x,u) = Ez [f(x + £Z,u)] backward pass to get M, usind R al
function gradient estimators [1] and policy gradient o | | a¥ _ A B B o T Rt SR
reinforcement learning [2]. However, those lead to e Using mtegratlo_n by parts, the differentiation of RS forward rollout on f using uy to get xy, SeEEes st gugst et ol EteS RS “:‘::;‘g:;?
significant data inefficiency when incorporating into smoothed function is : . gfe; C”;"r]ent cost Ji e NS
optimization-based planning and control frameworks. : Vlo Z U Jk k—1-
P P : V.fc(x,u) = EM[(f(x, u) — f(x +eZ'w)) gl:( ) ] updateSg,&Sq by collecting (u,x) on f
e \We propose an adaptive neural gradient field method for e Using Monte Carlo to anoroximate _ C_””ani Uk
hardware differentiation. We focus on application of the J y PP | until k > max iterations
proposed method in optimal control of a robotic system 1 ; Vlog u(Z4) T Adaptive training: training was done only when the cost
with unknown dynamics in the loop. Vefe(x,u) = MZ: (f(x, u)—f(x+ ez ,u)) . function dropped below the previous cost. ot
S

L

SRR

PROBLEM FORMULATION | ISESERRRERRNAGS il > T° & ANALYS'S

In future, we plan to test the proposed method in more

This is an example of RS, the

Function of x vs Function x after smoothing
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The dynamics f (x;, u;) is hardware, does not always have

an analytical form that can be differentiated for Learning” Journal of Machine Learning Research 21 (2020).

Se,(x,u) and Sy (x,u) are the gradient fields of the samples ranging from 500-1000

Cost Value
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