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Ultra-wide Bandgap (UWBG)

semiconductors for RF Devices
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« Johnson'’s figure of merit (FOM) for RF devices, Vgp X f1 = Fgr X Vg4 /2T.

 UWBG semiconductors offer high breakdown fields (Fzr) and saturation
velocity (Vgy)-

« Enables achieving high power density (P,,;), gain (Gp) and power added
efficiency (PAE).

« Power density of GaN HEMTs on SiC (state of the art RF transistor) is
limited to 10 W/mm due to thermal conductivity of SiC substrate (~400 W/m-
K).

 Power density of RF transistors can be increased by 5X by moving to

diamond which has the highest thermal conductivity of 2000 W/m-K.
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Diamond Static Induction Transistor

Key limitation in diamond — Deep donors and acceptors— Boron (E,=0.37 eV),
Phosphorus (E;~0.6 eV).
Deep donor/acceptor levels limit current density in diamond transistors.

To overcome this limitation, we study Static Induction Transistors (SITs) which enable
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) by injecting carriers from the source

Space charge limited conduction is effective in diamond for breakdown voltages of ~100 V
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The gate-drain length is a significant device design parameter for RF vertical devices.
To investigate the design space, RF and |-V simulations were performed using gate-drain
lengths in the range of 50-500 nm, drain voltage of -10 V, and varying gate voltages.

Voltage Gain vs Gate-Drain Length (Id=-100 mA)
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Cutoff Frequency vs Gate-Drain Length
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dependent behavior of at vaous gate-dai lengths with gate oltage = 1.5V
voltage gain, output - H——X_ source curent 4
resistance, and
transconductance can be
extracted from the |-V
simulation.

The cutoff frequency (f,) is
a vital specification for the
design of RF devices.

The gate-drain length
range of 50-200 nm
achieved the highest cutoff
frequencies and current
densities.

Drain Current (A} “inverted

Drain Voltage (V)

Conclusion

The 50-200 nm gate-drain length range shows the most promise for practical
design.

The next step for this project is to continue the parameter sweep with the
aspect ratio (gate length, fin width), source-gate length, and doping profile.
This project fits completely within the device modeling step of the development
process. After simulations are complete, the remaining steps are process
optimization, fabrication, and characterization.

Vertically Integrated Semiconductor Device Development
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