
Dissecting Google’s AddressSanitizer (ASAN) 
Vishal Juneja, Computer Science (Cybersecurity) 

Mentor: Yan Shoshitaishvili, Associate Professor, School of Computing and Augmented Intelligence

AddressSanitizer (ASAN) is an automatic error detection tool 
made by Google. It is used to find bugs such as Use-After-
Free, Out-Of-Bound accesses to heap, stack and global 
objects etc. 

Introduction Problems
1. ASAN is not very well documented. Current 

documentation is very concise, not very user friendly 
and lacks detailed explanation. On top of it, resources 
for learning ASAN is very scattered. The error messages 
produced by ASAN are difficult to interpret. 

2. ASAN has high memory and time overhead. Average 
slowdown caused by ASAN is 73% [1]. 

Background Study
1. K. Serebryany, D. Bruening, A. Potapenko, and D. 

Vyukov, “AddressSanitizer: A Fast Address Sanity 
Checker,” in 2012 USENIX Annual Technical 
Conference (USENIX ATC 12), Jun. 2012, pp. 309–318. 
[Online]. Available: 
https://www.usenix.org/conference/atc12/technical-
sessions/presentation/serebryany

2. Y. Zhang, C. Pang, G. Portokalidis, N. Triandopoulos, 
and J. Xu, “Debloating Address Sanitizer,” in 31st 
USENIX Security Symposium (USENIX Security 22), 
Aug. 2022, pp. 4345–4363. [Online]. Available: 
https://www.usenix.org/conference/usenixsecurity2
2/presentation/zhang-yuchen

3. https://github.com/gcc-
mirror/gcc/blob/releases/gcc-12.2.0/gcc/asan.cc

Future Work
Currently, we are conducting tests on various programs, 
calculating the overall memory and time overhead caused 
by ASAN. We are in the process of identifying the 
components that are causing the overhead, and then we 
plan to enhance the performance of these components by 
improving their functionality.

Observations
1. We researched on the inner workings of ASAN and 

identified the important components.
2. The backbone of ASAN involves shadow memory, which 

stores metadata about the program's memory usage. 
3. Shadow memory indicates whether memory is accessible 

and its state, such as if it is accessible, partially accessible, 
or inaccessible.

4. The correspondence between program memory and 
shadow memory is one shadow memory byte for every 8 
bytes of program memory. 

5. A shadow memory byte of 0 indicates that all 8 bytes are 
accessible, while other values from 1 to 7 represent partial 
accessibility, and -1 means no memory is accessible.

6. The ASAN Shadow Memory address calculation formula 
allows the computation of shadow memory addresses.

7. Instrumentation involves checking the shadow memory 
byte before memory access, introducing a time overhead 
for enhanced security.

8. The runtime library in ASAN manages shadow memory, 
replacing standard memory allocation functions with 
specialized implementations.

9. Malloc allocates redzones around memory regions to detect 
overflows and underflows, with redzone size influencing 
detection scope.

10. Free function poisons memory regions and places them in 
quarantine as a FIFO queue.

11. Redzones for global objects are generated at compile time.

Checks Added by instrumentation module

Heap overflow when ASAN is enabled

Stack Redzones

https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://www.usenix.org/conference/usenixsecurity22/presentation/zhang-yuchen
https://www.usenix.org/conference/usenixsecurity22/presentation/zhang-yuchen
https://github.com/gcc-mirror/gcc/blob/releases/gcc-12.2.0/gcc/asan.cc
https://github.com/gcc-mirror/gcc/blob/releases/gcc-12.2.0/gcc/asan.cc

	Slide Number 1

