Dissecting Google’s AddressSanitizer (ASAN)

Vishal Juneja, Computer Science (Cybersecurity)
Mentor: Yan Shoshitaishvili, Associate Professor, School of Computing and Augmented Intelligence

Introduction Problems

#include <stdio.h> _
elements in stack_arr=25

AddressSanitizer (ASAN) is an automatic error detection tool | #inciude <=trine.m> 4 x5 = 20 bytos of memory on stack willbe used 1. ASAN is not very well documented. Current
made by Google. It is used to find bugs such as Use-After- int main(int argc, char *argv(]) 1 partially acchessable shodow memory byte (4 byies) documentation is very concise, not very user friendly
Free, Out-Of-Bound accesses to heap, stack and global b s “ e H and lacks detailed explanation. On top of it, resources
objects etc. stack_arr[6] = 2; // accessing out-of-bound memory \ \ \ for learning ASAN is very scattered. The error messages
, UESSERE OFf | OF1 | 0x00 | 0x00 | 0x04 | O0xF3 | OxF3 produced by ASAN are difficult to interpret.
2. ASAN has high memory and time overhead. Average

Observations

1. We researched on the inner workings of ASAN and

Stack Redzones slowdown caused by ASAN is 73% [1].

identified the important components. e A e F k
. . Shadow bytes around the buggy address:
2. The backbone of ASAN involves shadow memory, which e T P PP TR, uture Wor
stores metadata about the program's memory usage. . = HHER R Currently, we are conducting tests on various programs,
. . . . inciude <stdlo. 0x0cOUTFFFB010: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
3. Shadow memory indicates whether memory is accessible #include <stdlib.h> Cairioon: £ fa fa fa fa a fa faa fa faa e fa 4 B calculating the overall memory and time overhead caused
i ifiti i i i #include <string.h XBCRUTHEF90: Fa £a Fu fa Fa 4 Fo. Fu Fa £u Fu Fa.fa Fa Fa Fo . . C
and ItS State, SUCh as If It IS acceSSIble, pa rtla”y acce55|b|e; aficLude S ChLIS g Sh:ﬂgw byigilégend{(o‘:e igggowayte iepf‘esint;F B‘Fap;liiat‘iFon‘Fbyies): by ASAN' We are In the process Of Identlfylng the
Or inacceSSi ble. . . . Pariiiﬁly sc:idressable: 01 02 83 64 65 06 07 .
1. The correspandence between program memory and ?t main(int argc, char *argv[]) ERCC components that are causing the overhead, and then we
' . char* str = (char*)malloc(sizeof(char) * 10); Stack right redsane: 3 plan to enhance the performance of these components by
shadow memory is one shadow memory byte for every 8 strcpy(str, "abcdefghijkl”); ok s b o 1

printf("str = %s\n", str); 5 improving their functionality.

Global init order: f6

bytes of program memory. return EXIT_SUCCESS; e eI

5. A shadow memory byte of O indicates that all 8 bytes are itk srjest: sifisin: b

ASan internal: fe

accessible, while other values from 1 to 7 represent partial Fegne stioca sessone: Background Study

accessibility, and -1 means no memory is accessible.

1. K. Serebryany, D. Bruening, A. Potapenko, and D.

Heap overflow when ASAN is enabled

6. Tne AS?hN ShadOV\i I\Semo;ysdjress calculatlodndformula Vyukov, “AddressSanitizer: A Fast Address Sanity
allows the computation of shadow memory addresses. : :
. p . . y . text00000000004AD9EAR ; char fastcall load({char =addx) CheCker;” In 2012 USENIX Annual TeChnlcaI
7. Instrumentation involves checking the shadow memory text:00000OO0004DIEAD public load
’ .text:00000POEEOADIEA® load proc near - CODE XREF: main+CBLlp C f USEN'X ATC 12 J 2012 309_318
1 1 1 Text:00000000004D0D9EABD On erence) un' 4 pp' ¢
byte before memory access, introducing a time overhead e oA e s 18 _ aword pte -18h , ,
. .text:00000OPOOEOADIEA® var 9 — byte ptr -9 [Onllne]. Avallable:
for enhanced Secunty. .text:00000000004D9EA® var_3 = gword ptr -8
. text:00000000004D9EAR addx = gword ptr 8 . . M _
8. The runtime library in ASAN manages shadow memory, +extioonooamonsborae https://www.usenix.org/conference/atc12/technical
. . . . " Ltext: ush rb 1 .
replacing standard memory allocation functions with toxt:00000000004D9EAT nov' rbp. rep sessions/presentation/serebryany
specialized implementations. ot 00000060004D9EAC mov zax. Libpevar 81 2. Y.Zhang, C. Pang, G. Portokalidis, N. Triandopoulos,
9. Malloc allocates redzones around memory regions to detect toxt:00000000004D9E Shr xR e and J. Xu, “Debloating Address Sanitizer,” in 31st
- text:00000000004AD9EBS mow al, [rax+7FFF2000h] . . .
overflows and underflows, with redzone size influencing toxt:00600000064D9ECT mp il USENIX Security Symposium (USENIX Security 22),
. - text:00000000004AD9ECS iz loc_AD9EES . .
detection scope. - text:0000000000409EC mov el [rbprvar 91 Aug. 2022, pp. 4345-4363. [Online]. Available:
. text:0000000000ADIEDG and rax, 7 . . .
10. Free function poisons memory regions and places them in | toxt :0000000000409ED cmp ol ol https://www.usenix.org/conference/usenixsecurity?2
quarantine as a FIFO queue. L oo0a00a0anERs Ty, TR Ibervar-ifl; unstened intes 2/presentation/zhang-yuchen
. . . - text:00000000004AD9EES
11. Redzones for global objects are generated at compile time. | textZ00000000004DIEES Loc_4D9EES: CODE XREF: 1oadr2373 3. https://github.com/gcc-
. text:0000000000AD9EES Mo rax, [rbp+wvar_18] o
- toxt:00000000004D9EE movex eax. byte ptr [rax] mirror/gcc/blob/releases/gcc-12.2.0/gcc/asan.cc
-text:0000000000AD9EF& pop rbp

. text:00000000004D9EFL retn

Checks Added by instrumentation module

* Ira A. Ful_ton Schools of
% Engineering

Arizona State University

https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://www.usenix.org/conference/usenixsecurity22/presentation/zhang-yuchen
https://www.usenix.org/conference/usenixsecurity22/presentation/zhang-yuchen
https://github.com/gcc-mirror/gcc/blob/releases/gcc-12.2.0/gcc/asan.cc
https://github.com/gcc-mirror/gcc/blob/releases/gcc-12.2.0/gcc/asan.cc

	Slide Number 1

