
Resolution-Invariant Image Classification via Implicit Neural Representations: 
An Application to Medical Whole-Slide Imaging

Woojeh Chung, Computer Science.
Mentor: Kookjin Lee, Assistant Professor.

School of Computing and Augmented Intelligence

Introduction and Motivation
• Classification task Limitations: Traditional Deep Neural Networks(DNNs) are 

confined to specific resolutions for classification tasks, limiting their 
applicability.

• High-Resolution Medical Imaging: Prevailing methods struggle with 
giga-pixel images such as whole-slide images (WSIs), crucial in medical 
diagnostics. 

• Implicit Neural Representation (INR): We leverage these INR representations 
to handle varying resolutions, optimizing image classification. 

• Resolution Invariant Classification: Our approach aims to break free from the 
constraints of fixed resolutions in image classification tasks. 

• Medical Image Application: The focus is on significantly improving the 
classification efficiency of vast medical images, facilitating advanced medical 
diagnostics.

Encoding images with INR
Results
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Figure 1: Schematic of the Implicit Neural Representation 

Implicit Neural Networks

• INRs are a way to encode images as continuous functions rather than discrete 
arrays, allowing for more flexible and detailed image descriptions.

• Unlike traditional array representations, INRs can represent images at 
arbitrary resolutions and scales, providing a more versatile framework for 
image processing.

• INRs are particularly 
suited for tasks 
requiring 
high-resolution 
detail or 
images that vary 
significantly in size, 
such as medical 
imaging.

• The base neural network is trained using meta-learning techniques, which 
allow it to learn general features across various tasks and datasets.

• Shift modulations are applied to the meta-learned base network to encode 
image-specific variations

• Meta-learning optimizes the base network, enabling it to rapidly update data-
specific parameters for each new image, 
bypassing the need for extensive retraining.

Figure 2: Latent Modulated SIREN 
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Figure 3: Reconstructed image and Normalized Confusion Matrix from CIFAR-10 Classification

• Successfully trained our model on the CIFAR-10 dataset, integrating INRs with 
shift modulations for image classification.

• Attained a top-1 classification accuracy of 59%, showcasing the potential of 
our method in handling standard resolution images.

• We were able to validate the approach as a viable method for classifying 
images using a base network and INR technique.

• Dataset Expansion: We are planning to augment our dataset to include 
images of various resolutions, broadening the scope of our model’s 
applicability. 

• Constructing Additional Functa-Sets: We will construct more functa-sets to 
facilitate the classification of these diverse-resolution images. 

• Maintaining Accuracy: We aim to maintain sufficient accuracy levels post-
expansion, ensuring the model’s robustness and scalability. 

• Whole-Slide Imaging (WSI) Application: Applying our trained model to WSI 
datasets, taking steps towards real-world medical diagnostic applications. 

Meta-Learning and Modulations
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