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MOTIVATION

The vehicle stability region is constructed by considering the non-linear lateral dynamics as
follows, [1]

𝑚𝑣
Ǘ𝑉𝑦 + 𝑉𝑥𝑟 = 𝐹𝑦𝑓𝑙 + 𝐹𝑦𝑓𝑓𝑟 cos 𝛿𝑓 + 𝐹𝑦𝑟𝑙 + 𝐹𝑦𝑟𝑟 + 𝐹𝑦𝐴𝐹𝑆,

𝐼𝑧 Ǘ𝑟 = 𝑙𝑓 𝐹𝑦𝑓𝑙 + 𝐹𝑦𝑓𝑟 cos 𝛿𝑓 + 𝐹𝑦𝐴𝐹𝑆 − 𝑙𝑟 𝐹𝑦𝑦𝑙 + 𝐹𝑦𝑟𝑟 + 𝑙𝑠 𝐹𝑦𝑓𝑙 − 𝐹𝑦𝑓𝑟 sin 𝛿𝑓 ,

where 𝑚𝑣, 𝐼
𝑧
, 𝛿

𝑓
, 𝑉𝑥, 𝑉

𝑦
, and 𝑟 are the vehicle mass, yaw moment of inertia, front steering angle,

vehicle longitudinal velocity, lateral velocity, and yaw rate. 𝑙
𝑠
, 𝑙

𝑓
, and 𝑙

𝑟
are the wheel track, front

wheelbase, and rear wheelbase, respectively. 𝐹𝑦𝑖 ( 𝑖 = 𝑓𝑙, 𝑓𝑟, 𝑟𝑙, 𝑟𝑟) are the lateral forces, which

are calculated by 2D LuGre tire model, on four wheels, respectively. 𝐹𝑦𝐴𝐹𝑆 is the additional tire

lateral force generated by the AFS control. [1]

METHODOLOGY  

The non-overshooting control design can be implemented by considering the boundaries as

references. In the next section, through the advantages of handling constraints, model

predictive control (MPC) is utilized as an appropriate approach to develop a uniformed non-

overshooting control design for general dynamic systems. Specifically, during the entire

prediction horizon, constraints are applied at each sampling time to avoid the overshooting

of system outputs. [1]

VEHICLE STABILITY REGION 

Consider a general linear system  which is the form, 
ሶ𝑥 = 𝑨𝑥 + 𝑩𝑢
𝑦 = 𝑪𝑥 + 𝑫𝑢

with,

𝑨 =
0 1

− ൗ𝑘 𝑚 − ൗ𝑏 𝑚
,𝑩 =

0
ൗ1 𝑚

𝑪 = 1 0 ,𝑫 =
0
0

Where, 𝑘 = 0.1 𝑁/𝑚, 𝑏 = 0.1𝑁. 𝑠/𝑚, 𝑚 = 5 𝑘𝑔
Here the optimization problem is,

𝐽 𝑘 = ෍

𝑗=1

𝑁−1

𝑥 𝑘+𝑗 𝑘 − 𝑥𝑟𝑒𝑓)
𝑇] ∗ 𝑄 ∗ 𝑥 𝑘 + 𝑗 | 𝑘 − 𝑥𝑟𝑒𝑓 + ෍

𝑗=1

𝑃−1

𝛥𝑢(𝑘 + 𝑗

∣ 𝑘)𝑇 ∗ 𝑅 ∗ 𝛥𝑢(𝑘 + 𝑗 ∣ 𝑘)

Where 𝑄 = 𝑑𝑖𝑎𝑔 10 1 , 𝑅 = 1, Prediction  Horizon, N= P = 10. 

Sampling time Ts= 0.1s

Non-overshooting constraints are [1],  

C1: 𝒚𝒊 𝒌 + 𝟏|𝒌 ≤ 𝒚𝒊−𝒓𝒆𝒇
C2: 𝒚𝒊 𝒌 + 𝒋|𝒌 ≤ 𝒚𝒊−𝒓𝒆𝒇, where 𝟏 ≤ 𝒋 ≤ 𝑵

C3: 𝒚𝒊 𝒌 + 𝑵|𝒌 ≤ 𝒚𝒊−𝒓𝒆𝒇 & 𝒚𝒊 𝒌 + 𝒋|𝒌 ≤ 𝒚𝒊 𝒌 + 𝑵|𝒌 , where 𝟏 ≤ 𝒋 ≤ 𝑵 − 𝟏

C4 : 𝒚𝒊 𝒌 + 𝑵|𝒌 ≤ 𝒚𝒊−𝒓𝒆𝒇 & 𝒚𝒊 𝒌 + 𝒋|𝒌 ≤ 𝒚𝒊 𝒌 + 𝒋 + 𝟏|𝒌 , where 𝟏 ≤ 𝒋 ≤ 𝑵 − 𝟏

The System is simulated with the proposed constraints,

We need to use the theory of terminal cost and terminal constraint to the proposed non

overshooting design in order to ensure the mentioned characteristics [2]. The new overshooting

design C5 is proposed using the terminal equality constraint as follows,

C5 :  𝒚𝒊 𝒌 + 𝑵|𝒌 − 𝒚𝒊−𝒓𝒆𝒇 = 𝟎 & 𝒚𝒊 𝒌 + 𝒋|𝒌 ≤ 𝒚𝒊 𝒌 + 𝒋 + 𝟏|𝒌 , where 𝟏 ≤ 𝒋 ≤ 𝑵 − 𝟏

The addition of terminal cost is done in order to ensure the stability as it is the CLF.

The terminal cost is added at the last step of the horizon N, [2]

Terminal cost, 𝑷(𝒙(𝒌 + 𝑵|𝒌)) = 𝒙 𝒌+𝑵 𝒌 − 𝒙𝒓𝒆𝒇)
𝑻] ∗ 𝑸𝒑 ∗ [ 𝒙 𝒌 + 𝑵 𝒌 − 𝒙𝒓𝒆𝒇 ,  

𝑸𝒑 = 𝒅𝒂𝒓𝒆(𝑨,𝑩,𝑸, 𝑹), Terminal constraint, 𝒙 𝒌 + 𝑵 𝒌 − 𝒙𝒓𝒆𝒇 = 𝟎

Non-linearity poses much complexity and difficulties with the choice the design parameters

making it hard to tune the system. Consider a cart-pendulum system with the following dynamics,

𝑥 = 𝑧 Ǘ𝑧 𝜃 Ǘ𝜃
𝑇

Ǘ𝑥 =

Ǘ𝑧
𝐹 − 𝐾𝑑 Ǘ𝑧 − 𝑚𝑝𝐿 Ǘ𝜃

2sin 𝜃 + 𝑚𝑝𝑔sin 𝜃cos 𝜃

𝑚𝑐 +𝑚𝑝sin2 𝜃

Ǘ𝜃
𝐹 − 𝐾𝑑 Ǘ𝑧 − 𝑚𝑝𝐿 Ǘ𝜃

2sin 𝜃 cos 𝜃 + 𝑚𝑐 +𝑚𝑝 𝑔sin 𝜃

𝐿 𝑚𝑐 +𝑚𝑝 −𝑚𝑝𝐿cos2 𝜃

where 𝑧, 𝜃, and 𝑢 are the cart position, pendulum angle, and input force applied on the cart. The

parameter values are 𝑚𝑝 = 𝑚𝑐 = 1 kg, 𝐿 = 0.5 m, and 𝐾𝑑 = 10 N ⋅ s/m. The initial condition is

𝑥(0) = 0 0 −𝜋 0 𝑇 and reference, 𝑥ref = 4 0 0 0 𝑇. Weighting matrices are 𝑄 =

10 0
0 𝐼3

and 𝑅 = [0.1]. The system is simulated with the proposed constraints like the spring

mass damper with N=P =10 & Ts= 0.1s. The only difference here is that the terminal penalty

matrix cannot be solved by the solution of Riccati equation and hence it is assumed as a positive

definite matrix, 𝑄𝑝 = 𝑑𝑖𝑎𝑔(50,5,10,1)

From the simulation above we could infer the following characteristics,

Convergence:   𝑻𝒆𝒓𝒎𝒊𝒏𝒂𝒍 𝒄𝒐𝒔𝒕 + 𝑪𝟓 > 𝑪𝟓 > 𝑪𝟒> C3 > C2 > C1

Settling Time:   𝐂𝟏 > 𝐂𝟐 > 𝐂𝟑 > 𝑪𝟒 > 𝑪𝟓 > 𝑻𝒆𝒓𝒎𝒊𝒏𝒂𝒍 𝒄𝒐𝒔𝒕 + 𝑪𝟓

LINEAR SYSTEM – SPRING MASS DAMPER 

An effective method to guarantee vehicle safety is to design a vehicle driving safety

algorithm that limits its states within a predefined stability region without passing the

boundaries. A non-overshooting model predictive control (MPC) was preliminarily

proposed to achieve that [1]. A new non-overshooting design is proposed in this work by

considering MPC with terminal cost and terminal constraint ensuring stability and recursive

feasibility [2]. The system output responses are studied using numerical examples for both

linear and non-linear systems. It is finally applied to vehicle lateral dynamics to guarantee

vehicle lateral stability.

NON-LINEAR SYSTEM – INVERTED CART PENDULUM 
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Fig 6 Vehicle Stability region 

Fig 5 System response for non-linear MPC with non overshooting constraints. terminal cost & C5 

Fig 4 Inverted Cart Pendulum 

Fig 2 Spring Mass Damper 

Fig 3 System response for linear MPC with non overshooting constraints, terminal cost & C5 

TERMINAL COST & TERMINAL CONSTRAINT   

Fig 1 Need and Design - terminal cost /terminal constraint  


