
Figure 1. Mathematical model of heat produced (W/m³) over 
time (s) by P. chrysogenum as it produces spores, which 
produce penicillin as a secondary metabolite. No heat 
production when T > 45 °C to account for cell death.
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Motivation
• Need for cost-effective/sustainable way to produce 

antibiotics and other medicine during long-term space 
missions, where resources are scarce

• Need for optimal forced aeration design to prevent 
overheating from fungal growth in a contained system [1]

Solid-State Fermentation
• Require less water, generate less wastewater, and reduce 

processing costs than submerged fermentation (SmF) [2] 
• Higher product yield in shorter time periods [3]

Bioreactors
• Apparatus that allows for bioprocesses to occur [4]
• SSF bioreactors have a lower demand on sterility due to 

lower water requirement and activity [4]

Penicillin
• Secondary metabolite of Penicillium chrysogenum fungi 

(filamentous) [5]
• Antibiotic for gram-positive bacteria [6]
• Used to treat pneumonia, sepsis, strep throat, etc. [7]
• Fungal growth produces heat; fungi can overheat/die [6]

Theory for Mathematical Modeling
• Derived Contois equation for filamentous microorganism 

growth (fungal growth kinetics) to find biomass formation 
(heat generation) [8]

•
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• Maximum growth rate 𝜇𝑚𝑎𝑥 = 0.1 ℎ−1 [8]
• Initial value 𝑋0 = 1000 g/m³ [8]
• Heat per biomass = 10,000 J/g at 25°C [7]

1. Model heat produced by penicillin growth
2. Optimize a penicillin-producing bioreactor by modeling 

heat transfer varying tray length and air inlet velocity
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• Mathematical manipulation
• Derivation of equations

• COMSOL Multiphysics Software
• Used to model heat transfer and air inlet velocity
• 2 models: laminar flow (air) and heat transfer (solid-substrate 

inoculated with P. chrysogenum as heat source)
• Varying tray length and inlet velocity

• Bioreactor 3D Modeling
• Three evenly-spaced out solid-substrates (“trays”) in tray bioreactor
• Sample length at 10 cm as seen in Figure 2
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Figure 2. Sample design showing air flow (indicated by green arrows) 
through tray bioreactor with 10x10x1 cm trays (blue). Forced air to 
come in from bottom boundary and flow out through the top
boundary, thus aerating the tray that is generating heat. The magnified 
front view snippet shows half of one tray and tray space. Symmetry of 
the bioreactor allows for this one segment to be modeled for heat 
transfer/velocity fields and be representative of the other trays.
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• Experimentally determining 
what porous media results in 
optimized penicillin production

• Expanding on SSF bioreactor 
system to include other air inlet 
configurations and possible 
cooling mechanisms

• Optimizing bioreactor for space 
habitat conditions

Figure 3. P. chrysogenum growth 
after 3 days. Presence of spores 
indicated by blue-green color. [5]
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