Movement and Quantification of *E. coli* in a Managed Aquifer Recharge (MAR) Site

Hannah Collins, Environmental Engineering Mentors: Dr. Rebecca Muenich and Dr. Kerry Hamilton, Assistant Professors School of Sustainable Engineering and the Built Environment

Research Questions

- 1. What is the risk of *E. coli* and fecal contamination in groundwater below a wastewater recharge pond at a MAR site?
- 2. How do *E. coli* concentrations in the pond vary over time due to weather patterns and various management practices?

Background

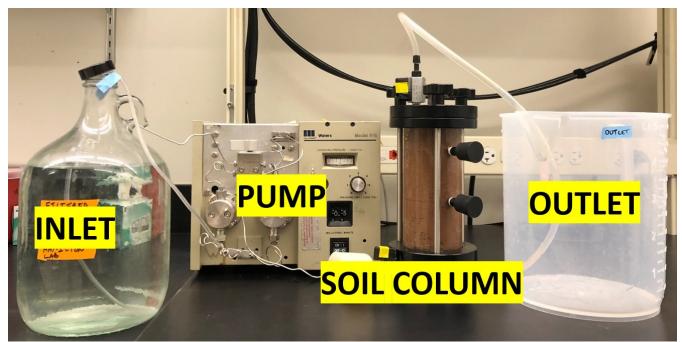
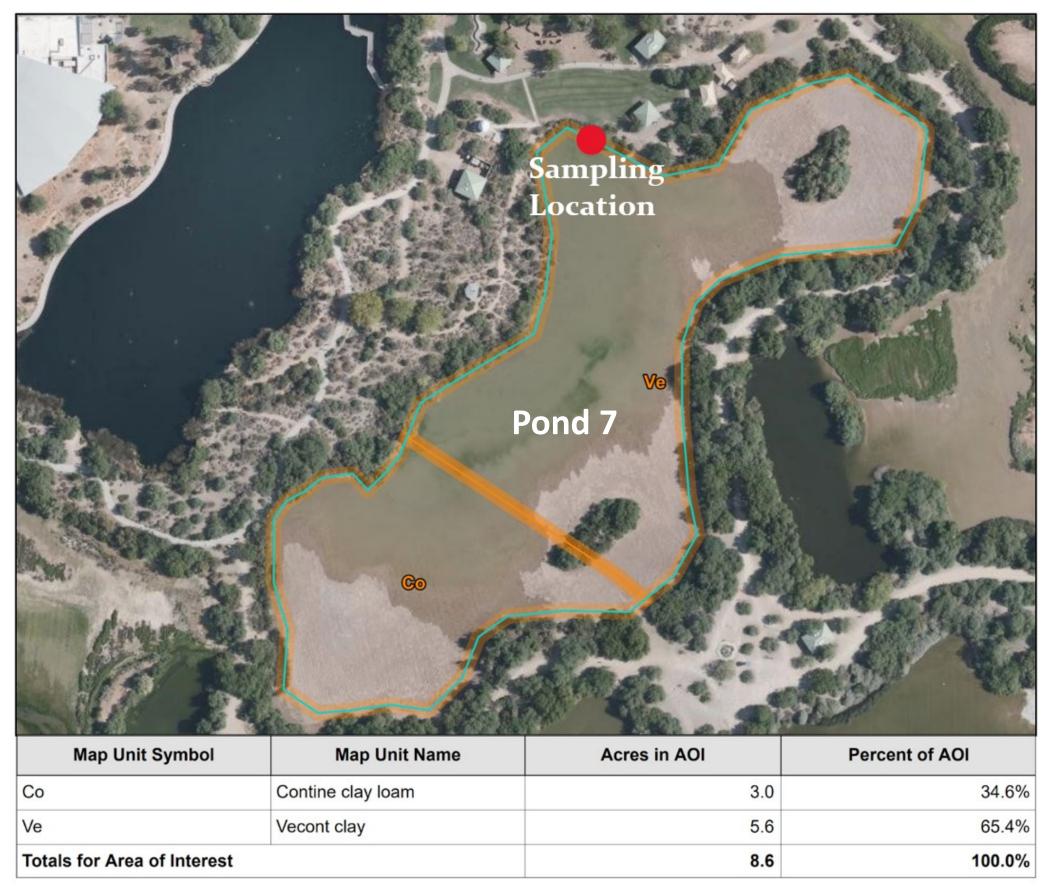
Managed Aquifer Recharge (MAR) Site

- Stores non-potable water to ease drinking water demand
- Supports desert riparian wildlife [1]
- The MAR study site is at the Gilbert Riparian Preserve (GRP)
- The GRP stores treated wastewater in recharge ponds
- GRP management practices: tillage, water distribution to ponds E. coli
- Fecal indicator bacteria indicates fecal pollution in water
- Fecal pollution is in the GRP recharge ponds due to animal activity
- Pathogenic *E. coli* can cause gastrointestinal illness in humans
- About 73,480 illnesses occur each year in the United States [2]

Methodology

Quantification of E. coli

- Sample water from Pond 7 at the GRP
- Count *E. coli* using culture-based quantification methods
- *E. coli* Movement Through Soil
- Sample soil from Pond 7 at the GRP (Vecont clay)
- Soil column experiment track transport of *E. coli* as it moves through Pond 7 soil and determine *E. coli's* maximum vertical travel distance through the soil

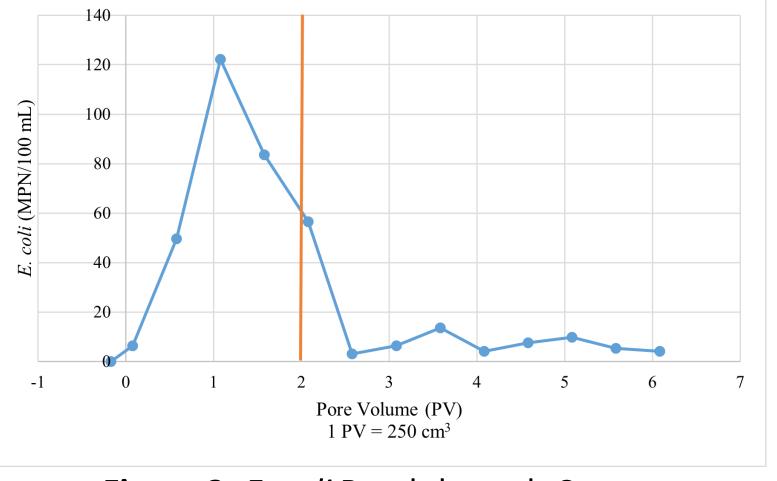

Figure 1: Soil Column Experiment Setup

Figure 2: Pond 7 at the Gilbert Riparian Preserve

The soil column experiment graph in Figure 3 below can help determine how deep below the surface *E. coli* can travel in soil. *E. coli* was injected for 2 pore volumes, then a bacteria-free solution was injected for 4 pore volumes (after the orange line).

Sampling water from Pond 7 over time has so far yielded the following results:
Table 1: Pond 7 *E. coli* Concentrations

San	ıp
-----	----

6/29/2 3/4/20 7/6/20 /12/2 7/26/2 8/9/20 8/26/2 9/9/20 10/11/

M	•
Ba	•
va	
Μ	•

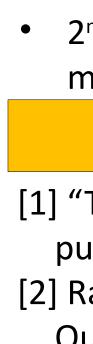


Figure 3: E. coli Breakthrough Curve

Results


ole Date	Average Result	Result Units	Quantification Method	Water Temperature (°C)	Pond 7 Volume	Tillage	Precipitation (in)	
2021	2600	CFU/100 mL of sample	TEC	29.0	Low	No	0	
022	110		mTEC	18.9	High	No	0	
022	0	MPN/100 mL of sample	^{mL} IDEXX Colilert	33.8	High	No	0	
2022	81			28.1	Low	No	0	
2022	220,295			28.6	Low	No	0	
022	71			28.9	Low	No	0.04	
2022	2,116			30.8	High	Yes	0	
022	207			28.2	High	No	0.08	
/2022	241			24.2	High	No	0	

Conclusions and Future Work

- lore data is needed to analyze variance of *E. coli* concentrations acteria concentrations in Pond 7 vary over time \rightarrow risk of exposure aries over time
- lore soil column experiments will be done to determine *E. coli* transport variance due to different management practices (bulk densities before and after tillage occurs at the GRP)
- 1st hypothesis: *E. coli* will be retained inside soil column because of
 - Attachment to soil particles (high surface area)
 - Bacterial die-off inside the column (cannot survive without a host)
 - Barrier formed by clay at the GRP
 - 2^{nd} hypothesis: higher soil bulk density \rightarrow less bacterial movement/recovery

References

- [1] "Town of Gilbert, Arizona." https://www.gilbertaz.gov/departments/ public-works/water/water-resources/reclaimed-water.
- [2] Rangel, Josefa M, et al. "Epidemiology of Escherichia Coli O157:H7 Outbreaks, Volume 11, Number 4-April 2005.

