Background and Introduction

- Active Covering is a machine learning problem where the goal is to find all positive cases in a set of data, in as few queries as possible. Active Covering appears in clinical trials, drug discovery, etc. Where the goal is to find positive cases in as few tested candidates as possible.
- Three different algorithms are tested against each other, first the Active Explore-then-Commit Learner, which initially samples the data then queries the closest node to a positive node (2). Next there is S^2 which uses label prediction and the graphs cut edges to isolate the positive cluster and label all the points (1). Lastly, the Improved algorithm uses S² and the epsilon neighborhood factor from Active Explore to decrease query cost, by not sampling the known negative nodes 3 closest nodes.

Fig 1. Data with 10 connections with red dots representing positives

Fig 2. Output of S² and Improved algorithm showing the isolated positives.

A Novel Query Efficient Algorithm for Active Covering

Evan Archer, Electrical Engineering Mentor: Dr. Gautam Dasarathy, Assistant Professor School of Electrical, Computer, and Energy Engineering

Problem Set Up

Each algorithm was tasked with finding 80% of positive nodes in the UCI Letters Recognition data set. This allows us to ignore outlier cases.

Letter data was processed into adjacency matrices, for the algorithms to use.

Test runs were done with changing number of nodes and number of connections for S² and the Improved Algorithms.

17 connected nodes is the minimum connections that result in a one connected cluster of nodes.

Active Explore Initially samples 5% of the data.

Results							
Information on Run				Query Cost Data			
ithim	# of Runs	# of Nodes	Connected Nodes	Average	Min	Max	STD DEV
е	25	20000	20000	1601.84	1589	1611	6.1825
	25	20000	17	1075.16	881	1704	287.948
oved	25	20000	17	1061.12	858	1860	279.871
е	20	20000	20000	1599.65	1590	1612	6.81542
	20	20000	5	358.1	304	632	73.433
oved	20	20000	5	363.8	285	690	107.627
е	100	5000	5000	411.44	393	1035	63.1721
	100	5000	10	331.01	262	654	72.7456
oved	100	5000	10	323.96	259	716	72.6742
е	100	5000	5000	404.28	395	417	4.18047
	100	5000	5	213.23	157	444	51.7209
oved	100	5000	5	204.35	161	335	36.3633

[1] Dasarathy, Gautam & Nowak, Robert & Zhu, Xiaojin. (2015). S2: An Efficient Graph Based Active Learning Algorithm with Application to Nonparametric Classification. [2] Jiang, Heinrich & Rostamizadeh, Afshin. (2021). Active Covering.

Conclusions

S² and the Improved algorithm are 2-4x more efficient than Active Explore depending on conditions.

S² and the Improved algorithm benefit as data size, positives nodes, cluster size increase.

There is a relationship between number of nodes and connections for the performance of S² and the Improved algorithm.

Future Work

Further explore the connectedness factor to make it an active connectedness factor

Look into the optimal number of connected points for S² and the Improved algorithm.

Optimizing S² for low density cluster cases

Acknowledgments

I would like to thank Dr. Gautam Dasarathy for his guidance and input on this research project. I would also like to thank ASU Research Computing for allowing me to run my code on the Agave Supercomputer.

 \bullet

 \bullet

 \bullet