
Why RNA-seq? 
RNA-seq captures changes in the HLA alleles 

that can occur from transcribing the DNA sequence 

into RNA. However, it has uneven coverage of genes
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Future Work
Testing 

Real data
Using real data with known HLA alleles we can test the accuracy 

of the algorithm against a variety of qualities of data 

Simulated data 
Simulating mRNA reads from a full genome we can further test 

the accuracy of the algorithm since the genome sequence is known. 

We can also test the algorithm’s ability to call novel alleles by 

removing the true allele of a sample from the database 
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Figure 3. Portions of the graph that lack coverage due to 

changing expression of mRNA are padded to allow the 

sequenced portions to connect while leaving the 

unsequenced sections ambiguous for allele calling. 

Abstract

The HLA, Human Leukocyte Antigens, are encoded by a 

polymorphic set of genes where even a single base change can impact the 

function of the body’s immune response to foreign antigens [1]. 

Although many methods exist to type these alleles using whole-genome 

sequencing (WGS), few can use RNA sequencing (RNA-seq) to show 

the functional expression of the alleles with its inconsistency in 

coverage, and none of these allow for novel allele discovery. We present 

an approach using partially ordered graphs to project sequenced data 

onto the known alleles allowing for accurate and efficient typing of the 

HLA genes with flexibility for discovering new alleles and tolerance for 

poor sequence quality. This graph-guided approach to assembling and 

typing the HLA genes from RNA-seq has applications throughout 

precision medicine, facilitating the prevention and treatment of 

autoimmune diseases where allele expression can change. It is also a 

necessary step for determining donors for organ transplants with the least 

likelihood of rejection. This novel approach of combining database 

matching with partially ordered graphs for assembling genetic sequences 

of RNA-seq data could be applied towards typing other alleles.

Significance of the HLA genes
HLA genes encode the MHC for function of 

the adaptive immune system in self-recognition. The 

pathogen driven selection on these genes creates a 

bias towards diversity in pathogen recognition and 

consequently polymorphism in the sequence [3].

Matching alleles between 

organ donor and recipient 

reduces the risk of rejection 

[1]. Allele type can also 

indicate a predisposition to 

autoimmune diseases and 

expression has been shown 

to change in some cancer 

cells [4]. 

Methods and Results

Figure 1. Database sequences of the known HLA genes are 

used to construct a graph representing all possible alleles. 

The exon junction sites for each allele are used in splice 

aware alignment with STAR of RNA-seq data to a reference 

genome then the panel of HLA genes.  Finally, the aligned 

reads are projected onto the graph and the most probable pair 

of alleles for each gene is found.

More than 2 paths across each bubble

More than 2 paths across each gene

2 total paths across each gene

Figure 2. A graph is 

constructed representing 

every sequence in the 

MSA as a path. Reads 

are aligned and unused 

paths are removed. Each 

allele will have a path 

through the graph. 

Heterozygous positions, 

where alleles differ, 

create bubbles. The two 

most probable true paths 

through the graph need 

to be found. 

Column Noise Processing

Bubble Processing

Bubble Merging

Figure 4. To find the likelihood of the observed data given a 

column genotype(𝐺𝑖), the joint probability of every read (𝑟 ∈ 𝑅𝑛) 

in each observed node(𝑛 ∈ 𝑁𝑖) is found. Each read is equally 

likely to come from either haplotype (𝐴1
𝑖 , 𝐴2

𝑖 ) and the average 

probability of the read given a haplotype, which is a single base in 

a column is found from the sequencing and alignment error 

probability (𝜖𝑟).  

Figure 6. A single contiguous read won’t be able to span multiple 

bubbles. Paired end reads come from different ends of the same 

molecule, and therefore the same haplotype. Paths between 

bubbles are combined with the highest amount of phasing. 

Figure 5. To find the likelihood of the observed data given a 

bubble genotype (𝐺𝑏), the joint probability of every position (i) on 

every observed read across the bubble (𝑟 ∈ 𝑅𝑏) is found. Each 

read is equally likely to come from either haplotype (𝐴1
𝑖 , 𝐴2

𝑖 ) and 

the average probability of the read given a haplotype, is found 

from the sequencing and alignment error probability (𝜖𝑟).  

Noise Reduction

capturing only the 

transcripts expressed at the 

time of sequencing, and 

much higher error rates 

resulting in noisy data. 

Paired end reads are used for 

the connecting information 

between different sequences 

that it provides when two 

distinct reads come from the

same molecule. 

Added Heterozygosity

Missed Heterozygosity

Figure 7. 

Before noise reduction

there are intractable 

bubble sizes with a 

maximum size of 270bp. 

After noise reduction the

bubble sizes are similar to

the true alleles with a

maximum size of 9bp.

Figure 8. True allele is homozygous but the algorithm decides on 

two bases. These can be removed in further processing or 

prevented by addressing alignment and projection errors.

Figure 9. True allele is heterozygous but the algorithm decides 

on a single most probable base. This type of error can’t be fixed 

once removed but could be prevented in preprocessing Class II

read filtering errors.
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