Assessing the Effect of Overparameterization in Quantum Neural Networks

Ryan Schwartz, Computer Science Mentor: Christian Arenz, PhD

To what extent does increasing the number of parameters in a quantum machine learning algorithm increase the rate of convergence when solving chemical problems?

1. Motivation

Quantum computing [1]

The field of **Quantum Computation** aims to use the properties of quantum mechanical systems solve to classically intractable problems.

Variational quantum algorithms

Picture of Sycamore chip taken from Google Quantum AI

In quantum computing a unit of computation is a qubit which can be represented by the **<u>Bloch sphere</u>**

2. Theory of VQA's

First, we formulate the problem of interest as an optimization problem

 $\min_{\vec{\theta} \in \mathbb{R}^M} J(\vec{\theta})$

Quantum Device

Evaluates cost function by measuring qubits

 $J(\vec{\theta}) = \langle 0 | U^{\dagger}(\vec{\theta}) H_p U(\vec{\theta}) | 0 \rangle$

We found that for randomly chosen initial values of, $\theta_1, \theta_2, \theta_3$ the value of J consistently converges to -1. (The lowest possible value of J).

This suggests that U_1 and U_2 are sufficiently similar in helping to descend the optimization landscape. Additionally, it shows parameterizing the quantum circuit with 3 parameters, is sufficient to consistently reach convergence for a single-qubit system.

4. Conclusion and Outlook	5. References
Summary We found that in the case of both types of overparameterization, similar convergence to the global minimum energy state was reached with 3 parameters using the gradient descent algorithm on the cost function J. This suggests that both ypes of overparameterization allows for favorable (local-optima-free) optimization landscapes Open questions How can we overparameterize to obtain similar convergence behavior for multi pubit systems? How many parameters are needed to obtain favorable optimization landscapes in multi qubit systems?	 [1] Nielsen, M. and Chuang, I. Quantum Computing and Quantum Information. Cambridge University Press, Cambridge (2003) [2] M. Cerezo et al., Variational Quantum Algorithms, Nature Reviews Physics 3, 625 - 644 (2021) [3] A. Magann et al., From Pulses to Circuits and back again: A quantum optimal control perspective on Variational Quantum Algorithms. PRX Quantum 2, 010101 (2021) [4] J. Lee et al., Progress toward favorable landscapes in quantum combinatorial optimization, Phys. Rev. A 104, 032401 (2021)

