Decentralized Reinforcement Learning

Dhanush Giriyan, Computer Science
Mentor: Andrea W. Richa, President’s Professor
School of Computing and Augmented Intelligence

Introduction & Motivation

Decentralized Multiagent Rollout

Results

Distributed computing is an approach to solving problems using multiple processors that work
together to achieve a collective goal while restricting inter-system communication based on
their locality. Often, these distributed computing problems are also optimization problems that
can only be solved using approximate methods. Multiagent Reinforcement Learning (MARL) is
a powerful class of algorithms that provides (sub-)optimal solutions to such multiagent
problems. Existing MARL algorithms rely on a centralized server to perform all major
computations, making them impractical to use in cases where no such centralized server is
feasible.

Where could such an instance occur?

Mine fields: during war; the exact location of each mine is unknown, and no centralized
system exists that can find them all with a single look...

This work proposes an algorithm called Decentralized Multiagent Rollout that answers the
following question:

Can Multiagent Reinforcement Learning algorithms be implemented in a distributed
manner?

-~

g
W

Y

Problem Description

This problem is a specific instance of the Vehicle Routing Problem (VRP). Our problem takes
place on a grid world where each grid cell has at most four neighboring cells, while in the
general VRP each cell can have an arbitrary number of neighboring cells.

Environment: A grid world where each cell can either be free or a wall (obstacle).

Tasks: These are scattered uniformly at random across the free cells of the environment.
They are stationary. A task is said to be solved when an agent arrives at its grid cell.

Agents: The entities that live on the grid world. During each time step, the agents move from
one free grid cell to an adjacent one (no diagonal moves) or wait in their current cell. An

agent can only (directly) see tasks and other agents in its local view.

View: (of an agent) covers all the free grid cells within k-hops of the agent’s current position;
k is an input parameter required at initialization.

Objective: Minimize the number of steps required to collectively solve all tasks.

The Multiagent Rollout algorithm as described in [1] involves sequentially computing controls or actions for each agent in the environment while minimizing an estimate of the
number of steps required to solve the problem instance from the current arrangement of tasks and agents. This estimation is done by using a heuristic; in our case we use the shortest
path heuristic. The required computations to determine an action for each agent are completed on a central server to which each agent is connected. Our work shows that one can
capitalize on the strengths of Multiagent Rollout while simultaneously abiding by the locality constraints. We call this algorithm Decentralized Multiagent Rollout. This implementation
not only permits the use of Multiagent Rollout in cases where such locality constraints must be maintained but also provides a massive speed-up in the runtime of the algorithm!

Decentralized Multiagent Rollout has the following three phases:

Self Organizing Agent Clusters (SOAC)

In SOAC, the agents segregate themselves into clusters centered around the task vertices while using only local information. Agents that are close to task vertices become
representatives of these clusters and agents that see these representatives in their view greedily add themselves to the representative’s cluster. In case multiple agents see the same
task, we perform a round-robin-based leader election to ensure that the representative agent of each cluster is a unique agent. Further, we limit the number of agents in a cluster
using a parameter . In our simulator, clusters are identified with colors as shown in the figures below.

HEXT
==

Local Map Aggregation (LMA)

The aim of this phase of the algorithm is to provide each agent in a cluster with the view of the whole cluster, i.e., the union of the views of each agent in the cluster. As a result of the
previous phase, we obtain an agent tree for each cluster rooted at the cluster’s representative. We traverse this tree using a depth-first search and, while doing so, pass the local view
of each agent, starting with the representative agent all the way down to the leaf agents and then back up to the representative agent. This results in the representative agent
obtaining an internal representation of the view of the whole cluster.

Cluster-Aided Multiagent Heuristic Rollout (CAMAHR)

This phase applies the Multiagent Rollout as described in [1] to each cluster. Starting from representative agent we compute an action for each agent and pass the computed action to
the next agent in the agent tree (again, given by the depth-first search order) for the cluster. The agents in a cluster coordinate their moves with each other due to this passing of
moves. Once every agent in a cluster has computed an action to take, we assign an exploratory action to any agent that was never assigned any cluster. This is possible if an agent does
not see any tasks or other agents that are already part of a cluster in its local view. After this is completed, all the agents simultaneously take the action that was assigned to them.
Agents then remove themselves from any cluster they may have been a part of, and the process resumes from the SOAC phase until no tasks remain.

The following image shows the result a single round of the above the three phases for the three instances shown earlier (red arrows point the moves taken by agents):

The following graphs compare the performance of Decentralized Multiagent Rollout with
Centralized Multiagent Rollout based on the total number of steps taken to solve the problem
instance and compute time averaged over ten randomly generated instances of different grid
sizes.

Average Number of steps v/s Grid Size

210

(%]
Q
3
9 160
o
é 110 =—=@=Decentralized - Global Exp
2 =@=Decentralized-Rand Walk
5 60
o0 Centralized
2 10 G o= ° :
< 10x10 20x20 30x30 40x40 50x50
Grid Size
Compute Time v/s Grid Size

14000
— 12000
[%]
O
4 10000
(]
g 8000
[=@==Decentralized - Global Exp
Y 6000
> =@==Decentralized - Rand Walk
Q.
£ 4000
5 Centralized
© 2000

0 ———
10x10 20x20 30x30 40x40 50x50
Grid Size

Average # of Exploration Moves

v/s
¢ Grid Size
3
= 35000
S 30000
© 25000
o
— 20000
< ==@=Decentralized - Global Exp
i 15000
S 10000 =@=Decentralized - Rand Walk
#*
s 5000 et _ — Centralized
© 0
% 10x10 20x20 30x30 40x40 50x50

Grid Size

Future Work & References

* Physical Experiments: We intend to use the robots to further test our algorithm in a more
realistic setting.

* Dynamic Tasks: Consider the possibility where new tasks are added to the problem
instance as old tasks are still being solved.

Reference:
[1] Bertsekas, Dimitri P. Multiagent Rollout Algorithms and Reinforcement Learning. arXiv

preprint arXiv:1910.00120, April 2020.

%‘@ IraA. Ful_ton Schoo!s of
Engineering

Arizona State University

