
Analyzing the Features and Efficacy of Classification Models for Physiological Stress Prediction 
Allen Lin, Computer Science

Mentor: Dr. Ming Zhao, PhD, Professor
School of Computing and Augmented Intelligence

Motivation and Background Conclusions

Results

Future Work

References and Related Works

● Removal of non-responses and other noisy data
● Mapped biometric data to inputted stress levels based on certain time interval 

of relevance

● RF, XG Boost, and Decision Tree are best at stress 
prediction among common models
○ Consistent with previous studies [4]

● Neural network models performed equally well or 
better for overall metrics
○ Good potential for further use of deep learning 

in stress prediction
● Larger time windows (up to 3 hours) yielded better 

accuracies
○ More data outweighs more relevant timeframe

● Strong correlation between heart related metrics
and model efficacy

● Test latency of real-time stress prediction on Fitbit
mobile devices

● Compare efficiencies of larger deep learning 
models on mobile devices with efficiencies of 
standard supervised learning models

● Consider addition of other features such as 
location contextualization or emotional responses
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Neural Network Development

Implemented two forms of neural network: CNN and MLP

● Convolutional Neural Network (CNN)
○ Reshaped dataset to fit Keras 1-Dimensional CNN
○ Implemented network with convolutions, 

pooling, flattening, and dropout.

● Multilayer Perceptron (MLP ANN)
○ Created MLP Classifier with 4 hidden layers

Acknowledgements

Many thanks to Dr. Ming Zhao, Sang-Hun Sim, and Tara 
Paranjpe [VISA Lab], as well as Dr. Nicole Roberts [ASU 
Emotion Lab] and the Phoenix Police Regional Academy. 
Thank you to the National Science Foundation (NSF) 
Award CNS-1955593.

Feature Extraction

Data Collection

Data Processing

● Binary classification threshold tuning down to 0.3 due to unbalanced dataset
● SMOTE-ENN for both over-sampling and under-sampling 
● Principal component analysis (PCA) to reduce components
● Divided dataset into different intervals of time to investigate ROC_AUC

○ Intervals from 1 minute to 3 hours
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ROC_AUC Score Analysis Across Different Time Intervals

RF

SVM

KNN

Adaboost

XGBoost

DT

MLP ANN

Average

Model Type Accuracy % Recall % ROC_AUC %

Random 
Forest

0.694 0.802 0.738

XG Boost 0.755 0.697 0.737

Decision Tree 0.762 0.613 0.696

MLP ANN 0.775 0.67 0.737

CNN 0.784 0.674 0.738

CNN Diagram

Motivation: Accurate stress prediction in law enforcement can serve to better 
prepare officers for the intensity of their work.
• 27% of police officers suffer from symptoms of PTSD [1]

Concepts in current stress prediction research:
• Healey [2] and the WESAD dataset [3] use physiological data.
• Standard supervised learning models (ex. RF, SVM) are used regularly [4].
• Deep learning in stress prediction has been attempted [5].

Goal:
• Compare conventional models with deep learning and investigates the effect 

of certain features and time ranges
• Generate results on the ideal algorithms and conditions for stress prediction.
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Feature Model

Resting Heart Rate
Random Forest, XG Boost, 

Decision Tree

RMSSD (Root Mean Squared 
of Successive Differences)

Random Forest, XG Boost

Max Steps Random Forest, Decision Tree

Mean HR Random Forest, Decision Tree

Comparison of 5 Strongest Models

Heart Rate Calories, METs, and Steps

Mean, Max, Min, Std Dev, 
Regression Line, RMSSD, 

Resting Rate
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