Investigation of a polyether urethane-based polymer for promoting bone tissue healing

Michelle Loui, Biomedical Engineering Mentor: Dr. Brent Vernon, Associate Professor School of Biological and Health Systems Engineering

Research Hypothesis:

It is predicted that a polyether urethane-based polymer as a component will help develop an effective technology for the repair and promotion of healing in bone tissues of patients with major fractures and/or defects in bone.

Background

- ~10 million people in the US suffer from bone disorders and would benefit greatly from bone and tissue regeneration technologies [1]
- Bones become very brittle and prone to breakage in disease and with aging → Increased risk of bone fractures and bone loss
 [2]
- Polyurethanes have a wide range of mechanical properties with favorable biocompatibility qualities [3], and hence are used in many health care applications as a component in catheters, heart valves, tissue regeneration efforts, including bone.

Methods

- A diol, a diamine, and diisocyanate were used in the reactions
- Synthesis of polymer:
 - Synthesis, precipitation, and filtration
- Characterization:
 - ¹H Nuclear Magnetic Resonance (¹H-NMR), accelerated degradation study at 70 °C and 37 °C

Results

(C)

Figure 1. Accelerated Degradation Study Conducted at 70 °C

- (A) Set-up of the study. 4 different time-points were selected: 2 weeks, 4 weeks, 8 weeks, and end-of-semester. 3 samples were prepared for each time duration.
- (B) 1 week after beginning the study. The polymer condensed up the sides of the vial.
- (C) 2 weeks after beginning the study. The polymer was mostly dissolved.

[1] M. E. Furth and A. Atala, "Chapter 6 - Tissue Engineering: Future Perspectives," in Principles of Tissue Engineering (Fourth Edition), R. Lanza, R. Langer, and J. Vacanti, Eds. Boston: Academic Press, 2014, pp. 83–123.

[2] "What is Osteoporosis? | International Osteoporosis Foundation," International Osteoporosis Foundation, 2020. https://www.iofbonehealth.org/what-is-osteoporosis (accessed Apr. 14, 2020)

[3] H.-Y. Mi, X. Jing, G. Yilmaz, B. S. Hagerty, E. Enriquez, and L.-S. Turng, "In situ synthesis of polyurethane scaffolds with tunable properties by controlled crosslinking of tri-block copolymer and polycaprolactone triol for tissue regeneration," Chemical Engineering Journal, vol. 348, pp. 786–798, Sep. 2018, doi: 10.1016/j.cej.2018.04.198.

Discussion

- Several synthesis reaction times were tested to see which would produce a favorable polymer for the degradation study.
- A 4-hour synthesis was initially used for the degradation study; however, due to its low molecular weight, it was almost completely dissolved by 2 weeks at 70 °C.
- Synthesis time was increased to 24-hours to increase the polymer's molecular weight.

Future Work

- A second accelerated degradation study at 70 °C and 37 °C is ongoing.
- Several batches of polymer of varying monomers and monomer ratios will be synthesized and characterized.

Acknowledgements

Research described in this poster is supported by the National Center for Dental and Craniofacial Research of the National Institutes of Health under award number 1R44DE028213-01 and NuShores Biosciences LLC.

