Toward Mapping Physiological Levels of Glucose and Amino Acids in vivo

Joshua Gunn, Biomedical Engineering

Mentor: Dr. Scott Beeman, Assistant Professor School of Biological and Health Systems (SBHSE)

Research Question

- Motivation: The ability to monitor and diagnose patients through various imaging techniques is a considerable opportunity for physicians and scientists. One interesting idea is to develop a glucose-sensitive imaging technique to monitor if a tumor is growing or not.
- Research Question: Can
 Deuterium Metabolic Imaging
 (DMI) detect glucose at physiological levels using NMR
 Spectroscopy in vitro?
- Project Goals:
 - i. Gain expertise and background knowledge through a deep literature review.
 - ii. Determine if glucosecan be mapped atphysiological levels.

Background

- In a recent study, deuterated glucose was administered noninvasively to rats, metabolic maps of high spatiotemporal resolution were generated
 - Clear differences in metabolism of [6,6'2H2]glucose and [2H3]acetate between normal brain and tumor tissue in a rat glioma model were shown [1]
- A technique called GlucoCEST found they could successfully map the metabolism of unlabeled glucose in vitro with concentrations between 5 mM and 10 mM using MRI [2]
- Another processes for imaging called STRIDE used Raman Scattering imaging to map carbondeuterium bonds at a detection limit of 10 mM [3]

Future Direction

- The next step is to perform NMR spectroscopy on NMR tubes with of [6,6'-2H2]glucose and L-methionine-methyl-D3 at varying concentrations. This will allow us to determine at what concentrations we can successfully map glucose in vivo.
- We can then move toward mapping other substrates that tumors depend on for growth such as fructose, calcium and/or pyruvate.
- Finally, we will move toward in *vivo* testing to find the most efficient and effective substrate to test for tumor malignancy.

Experimental Design

Treat and Prepare NMR tubes

Vary concentrations of [6,6'-2H2]glucose and L-methionine-methyl-D3 from 100 <u>u</u>M to 5mM (5 samples per concentration and 5 concentrations per molecule).

Imaging Tests

Scan NMR tubes at 200 MHz (4.7T) at the ASU Center for Magnetic Resonance Research.

Post-test Analyses

Using Bayesian
Probability-based
software we will
determine the
lowest detectable
concentration.

Acknowledgments

• I would like to thank Dr. Beeman for allowing me this opportunity to explore his research and for being so helpful. I owe a big thank you to the FURI staff, especially Melissa Stine for lending support as well as giving me the chance to participate in FURI for another semester!

