ARSENIC ADSORPTION IN IRON-IMPREGNATED BIOCHAR

Ashlyn Laird, Chemical Engineering Mentor: Dr. Jared Schoepf, School for Engineering of Matter, Transport & Energy

Background

Biochar, a **carbon-based** material with applications in **water treatment**, is produced through the **pyrolysis** of biomass in a no-oxygen environment at high temperatures [1]. Biochar's **large surface area** and **porosity** make it a promising candidate for water contaminant removal, but additional modifications such as **iron-impregnation** will further facilitate contaminant adsorption [2].

Methodology

Iron Loading	 Oxidation w/ KMnO4 solution Iron-loading w/ FeSO4 solution 	
XRF Analysis*	 Biochar: buckthorn (1) & waste wood (2) Determine iron content 	
Water Treatment	 Column test of treated and raw biochars Run until adsorption stops 	
ICP-MS Analysis**	 Water samples: before & after biochar Acid-digested biochars 	Biochar being stirred in KMnO4 solution
	Iron Loading XRF Analysis* Water Treatment ICP-MS Analysis**	 Iron Loading Oxidation w/ KMnO4 solution Iron-loading w/ FeSO4 solution XRF Analysis* Biochar: buckthorn (1) & waste wood (2) Determine iron content Water Treatment Column test of treated and raw biochars Run until adsorption stops Water samples: before & after biochar Acid-digested biochars

*XRF- X-Ray Fluorescence **ICP-MS- Inductively Coupled Plasma Mass Spectrometry

Results

- Count of iron in treated biochar 1 was 3.4x that of raw biochar
- Count of iron in treated biochar 2 was 7x that of raw biochar

Conclusion & Future Work

While the **water treatment** and **ICP-MS** analysis have not yet been completed, **XRF analysis** successful **iron loading** onto the raw biochar. It is hypothesized that this additional iron will play a pivotal role in the adsorption of arsenic in tap water. Unfortunately, this process is inaccessible for developing/rural communities. A future goal of this project is to develop an iron-loading method to treat biochar in areas where other lab-based processes are unavailable.

References

[1] Gwenzi, W. et al. (2017). Biochar-Based Water Treatment Systems as a Potential Low-Cost and Sustainable Technology for Clean Water Provision. Journal of Environmental Management, 197, 732–749., doi:10.1016/j.jenvman.2017.03.087.

[2] Kilduff, J., Gerbini, A., Deede, B., Lennox, E., Martin, H., Desai, H., Arrighi, J., Sawicz, K., Raju, R., Komisar, S., Jovic, S., Gupta, S., Carley, V. (2007). Final Report: Providing Safe Water to Rural Nepal: A Novel Water Filtration System. United States Environmental Protection Agency.

Special thanks to Dr. Jared Schoepf, Dr. Paul Westerhoff, and Dr. Mahmut Ersan for their assistance with this project!

Arizona State University