Extending The Use of a Portable Spectrometer to Photoluminescence Osei B. Dua, Mechanical Engineering Mentor: Nathan Newman, Professor School for Engineering of Matter, Transport and Energy

4th Model

Research question

How can the detection of photoluminescence be incorporated into an inexpensive, portable UV/VIS/IR spectrometer?

Photoluminescence can be used to identify the nature of materials, including the identification of skin disease, including cancer, and detecting whether food is safe to eat or is spoilt.

Progress

1st Model

2nd Model

*All dimensions in mm

Obstacles

- Limited movement to and from the lab due to COVID-19
- Identifying best clearance for 3D-printing fitting parts in Formlabs 3D printer
- \succ Unexpected leakage of the excitation beam into the detector in the initial designs

Acknowledgements

Max Linnander - Program Manager, SciHub

Two different proof-of-concepts were developed: 1. Prototype A: using an Ocean Optics spectrometer (functional) 2. Prototype B: using a photodiode (work-in-progress)

Ocean Optics Probe

Probe holder

3rd Model

Approach

Designing a device that uses an LED as a light source and a filter to eliminate any signals from the excitation beam from entering the detector

 \succ Detecting the photoluminescence with the use of an Ocean Optics probe and subsequently a photodiode Prototypes

Prototype A

Filter

Prototype B

