Surface-Based Aperiodic Structures for Additive Manufacturing

Daniel Anderson Advisor: Dhruv Bhate

Research Objective

The objective was to develop a method to design Aperiodic Surface-Based Cellular Structures. These structures can produced using additive manufacturing. They are then tested under compresion to determine the effect of randomness on the structure's behavior.

2D Version - Honeycombs

The voronoi node pattern is designed using a periodic pattern, positions are perturbed by adding a random vector to each node which controls the randomness of the resulting structure

3D Version - Lattices

Shelling using boolean operations

Aperiodic Surface

Traditional TPMS
Gyroid Surface

Experimental Design - 90 specimens

- 2 wall thicknesses
- 6 Different Shapes
- 4 Perturbation Levels
- 3 Crush directions

Specimens are 3D Printed out of nylon and compressed using Instron machine

- Compression curves are then compared to measure metrics relating to energy absorbing behavior

Future Work

- This method can be used to design biomimetic structures
- Structural optimization by node placement, allows for complex structures to be described using less data
- Multi-functional design since surface-based structures contain multiple non-intersecting channels, they could be used to exchange heat between two fluids while still providing a structural function

Resulting 2D designs using different perturbation levels