MORE | Spring 2024
Integrated Machine Learning Approaches for Advanced Analysis of Semiconductor Materials
The performance of most electronic materials is capped by their inherent properties. Analyzing these materials is a complex, time-consuming task. This research employs novel machine learning techniques to enhance efficiency, consistency, and quality control in line with industry advancements. By streamlining analysis and eliminating manual feature engineering, it offers an automated, efficient solution for material characterization and nanoscience research. The insights gained will advance our understanding of nanoscale structures and material interactions, benefiting various industries like semiconductors, biomechanics, materials science, and electronics.
Student researcher
Aishwarya Katkar
Mechanical engineering
Hometown: Thane, Maharashtra, India
Graduation date: Spring 2024